Fuzzy Modeling and Identi cation , A guide for the user 1

نویسندگان

  • Jairo J. Espinosa
  • Joos Vandewalle
چکیده

The use of fuzzy control systems had been proved to be very useful for industrial applications. Fuzzy modeling is an area where an overwhelming number of techniques for non-linear function approximation have been developed but there is a lack of handy information for the end user in industry. The present paper deals with this topic by helping the end user with issues like when and how to use fuzzy models, experiment design for fuzzy modeling and identiication, structure selection and validation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Structure Identi cation of TSK-Fuzzy Systems using Genetic Programming

This paper explores a new approach to structure identi cation of TakagiSugeno-Kang (TSK) Fuzzy Models. We employ Genetic Programming (GP) to nd an optimal partition of the input space into Gaussian, axis-orthogonal fuzzy sets. We compare the GP approach with a greedy partition algorithm (LOLIMOT) for modeling an engine characteristic map.

متن کامل

A Rule-Based Fuzzy Model for Nonlinear System Identi cation

This article discusses a rule-based fuzzy model for the identi cation of nonlinear MISO (multiple input, single output) systems. The dis cussed method of fuzzy modeling consists of two parts: structure modeling, i.e. determing the num ber of rules and input variables involved respec tively, and parameter optimization, i.e. optimizing the location and form of the curves which describe the fuz...

متن کامل

Input Selection for ANFIS Learning

We present a quick and straightfoward way of input selection for neuro-fuzzy modeling using ANFIS. The method is tested on two real-world problems: the non-linear regression problem of automobile MPG (miles per gallon) prediction, and the nonlinear system identi-cation using the Box and Jenkins gas furnace data 1].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997